” AD-A185 842 PARALLEL ALGORITHNS FOR COMPUTER VISION ON THE
CONNECTION MACHINEC(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB J J LITTLE
UNCLRSSIFIED NOV 86 RI-N-928 DRCA76-85-C F/G 1277

(P LT VI L AT TOLra o - . g . oy “a @k CRA"a 8 B AL e ath avh aldh ath oA aff o Ba- afh-oi E4 Sas v _pL 3,
e & P . afat ; . o

- 'r‘:

."

e
< :;.‘

1}

e

o

o

X

8

»

2

R

b,

‘t

- 1.0 58 pas
=
o L] =
IS e
E2S s e
.:_. ‘\.

(|

::E A Rf‘)i;opv RESC TN AR
:

RETRES

-
s

AD-A185 842

UNTLASSIFILED

"EC @ . c_ a8t f TAT An °F o § PASE I\.nD‘llé:\Ttr'.ﬂ"
! READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T BEPCRY NUMBER 12 GOVT ACCESSION NO|) RECIPIENT S CATALOG NUMBER
928
4 TiT_E rend Subtirie) S TveE OF REPORT a4 PERIOD COVERED
Parallel Algorithms for Computer Vision Memo
on the Connection Machine § PERFOMMING ORG. REFORT NUMBER
AU TaOR s, @ CONTHMACT OR GRANT NUMBER(s)
el DACA76-85-C~0010
James J. Little NOOO14-85-K-0124
3 PERFDAMING DRGANIZATION NAME ANO ADDRESS 10. PROGAAM ELEMENT PROJECY TaASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

t O CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency November 1986
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 30
14 MONITORING AGENCY NAME & ADDMESS(i! ditterent irom Contrelling Olfics) 18. SECURITY CLASS. rof thie repert)
Office of Naval Research
R . UNCLASSIFIED
Information Systems
Arlington, VA 22217 18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6 OISTRIBUTION STATEMENT (of thite Report)

Distribution is unlimited.

17 OISTRIBUTION STATEMENT (ef tNe abatract entered In Block 20, I dilterent frem R

16 SUPPLEMENTARY NOTES ‘Q

None
-

19 XEY WOADS /Continue on reverse eide il Nnecessary and Identily by bleck number)

Computer vision; Computational geometry; Parallelism

20 ABSTRACT Continue en reverse side il necessary and idontily by dleck manber)

The Connection Machine is a fine-grained parallel computer having up to 64K
processors. It supports both local communication among the processors,

which are situated in a two-dimensional mesh, and high-bandwidth communication
among processors at arbitrarv locations, using a message-passing network. We
present solutions to a set of Image Understanding problems for the Connection
Machine. These problems were proposed bv DARPA to evaluate architectures for

Image Understanding svstems, and are intended to comprise a representative -->

DD ,"%3%, 1473 toimiow or 1 wov 6313 oesoLETE UNCLASSIFIED

S/N 0:62-014-6601

SECURITY CLASSIFICATION OF THIS PAGE ("hen Data Bnteves

fiah ik Jied Sad Ah Aod Aol Ak &b Bk B8 B8 2 2 ol 4
Ba Bl el b s 80 ot |

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo 928 November 1986

PARALLEL ALGORITHMS FOR COMPUTER VISION
ON THE CONNECTION MACHINE

James J. Little

ABSTRACT: The Connection Machine is a fine-grained parallel computer
having up to 64K processors. It supports both local communication among
the processors, which are situated in a two-dimensional mesh, and high-
bandwidth communication among processors at arbitrary locations, using a
message-passing network. We present solutions to a set of Image Understand-
ing problems for the Connection Machine. These problems were proposed
by DARPA to evaluate architectures for Image Understanding systems, and
are intended to comprise a representative sample of fundamental procedures
to be used in Image Understanding. The solutions on the Connection Ma-
chine embody general methods for filtering images, determining connectivity
among image elements, determining spatial relations of image elements and

computing graph propertics, such as matchings and shortest paths.

Acknowledgements. This report describes research done within the Arti-
ficial Intelligence Laboratory at the Massachusetts Institute of Technology.
Support for the A.l. Laboratory’s artificial intelligence research is provided
in part by the Advanced Rescarch Projects Agency of the Department of
Defense under Army contract number DACATA-85 C 0010 and in part by
DARPA under Office of Naval Research contract NOOO14 85 K 0124,

c; Massachusetts Institute of Technology 1986

87 ‘oo 9

E

‘ ’ -’..‘. a i“h‘ ‘i

T TR T ma
\\.-r-‘.'

N

-~
“~
s
‘-
“

o
¥
[

3
«

» l‘ "
¢
Yy

1
1

LN A LSS
U —
e e

fh
Y &4y

Y %
a4

)

Ir

HCR

.t
\."l‘
[S S
St et

Pl
D
*r
e

y 1 1
t 2

=
Yy

w?, 7,
.

‘. , PLAFN
URJE AR N
. Pt
SENY N N

3

.
L

".'.’- LS
PPN
s v

h

X RE
)
ey

v
N’
“
4

k)

7 f,
\ a‘:l

5

.
[O

L. o

=,

_oma- . aa. gl " e atas e L aas iav oy _-qu,v—ﬂ“ﬂj"!!'ﬂ’l'l!ltl!l!"!F-

1 Introduction

Several problems for vision research were proposed for a DARPA Workshop
on Parallel Architectures for Image Understanding. This document describes
the design and impiementation »f solutions to these problems on the Con-
nection Machine!. We describe the Connection Machine and its features
which permit fast parallel solutions to these problems. Then, we describe
each problem and present its solution. In each case, we provide an est'mate
of the running times for the sample problems on the current version of the

Connection Machine.

1.1 The Connection Machine

The Connection Machine [Hillis85] is a powerful fine-grained parallel machine
having between 16K and 64K processors, operating under a single instruction

stream broadcast to all processors (figure 1). It is a Single Instruction Mul-

tiple Data (SIMD) machine, because all processors execute the same control
stream. Each of the processors is a simple 1-bit processor, currently with 4K
bits of memory. There are two modes of communication among the proces-
sors: first, the processors are connected by a mesh of wires into a 128 x 512
grid network (the NEWS network, so-called because the connections are in
the four cardinal directions), allowing rapid direct communication between
neighboring processors, and, second, the router, which allows messages to be
sent from any processor to any other processor in the machine. The proces-
sors in the Connection Machine can be envisioned as being the vertices of a
16-dimensional hypercube (in fact, it is a 12-dimensional hypercube; at each
vertex of the hypercube resides a chip containing 16 processors). Figure 2
shows a 4-dimensional hypercube; each processor is connected by 4 wires
to other processors. Each processor in the Connection Machine is identified

by a unique integer in the range 0...65535, its hypercube address, impos-

ing a linear order on the processors. This address identifies the processor

for message-passing by the router. Messages pass along the edges of the
hypercube from source processors to destination processors. An operation
where messages are transmitted among the processors using the router will

be termed a send operation. In addition to local operations in the processors,

e — —) . -J

PConmection Machine is a tradennak of Thinking Machines Corporation,

A ARREAR
ol Oy

-~

n.‘
A
6 8 Y

SO
'-’\ 5

=~ P

N ENNY

A

by
3,
L Tt

S

LY
3

'l “ ’
AR SRR

R

P @ v

s

T "R e A TP IPL I L AL P S I S LT e) R I
"’ "'F*-"'\-'-’-’ T a T Y ’._-.;ﬁn"'. RCRERSS ~"-‘"'*:'-a""

FRONT END

1

MICROCONTROLLER

[
NEWS { ROUTER

A
Y DY

MEMORY PROCS

Figure 1: Block Diagram of the Connection Machine

the Connection Machine can return to the host machine the result of various
operations on a field in all processors; it can return the global maximum,
minimum, sum, logical AND, logical OR of the field.

To manipulate data structures with more than 64K elements, the Connec-
tion Machine provides virtual processors. A single physical processor operates
as a set of multiple virtual processors by serializing operations in time, and
dividing the memory of each processor accordingly. This is otherwise in-
visible to the user. The number of virtual processors assigned to a physical
processor is denoted by the virtual processor ratio (VP ratio), which is always
> 1. When the VP ratio is strictly greater than 1, the Connection Machine

is necessarily slowed down by that factor, in most operations.

1.2 Powerful Primitive Operations

Many of the problems investigated here must be solved by a combination
of communication modes on the Connection Machine. The design of these
algorithms takes advantage of the underlying architecture of the machine in
novel ways. There are several common, elementary operations used in this

discussion of parallel algorithms. Sorting, for example, of all 8-bit pixel values

e N
CR S
YY)

"-“'r—r"-

Figure 2: 4-dimensional Hypercube

in a 512 x 512 image (VP of 4:1) takes approximately 30 ms. A 256 x 256
(7 image (VP 1:1) can be sorted in approximately 10 ms. This operation is

primitive, and is useful, because of its power and speed.

1.2.1 Scanning

The scan operation is a primitive, global operation that uses the hypercube
connections underlying the router to distribute values among the proces-
sors of the Connection Machine. scan takes a binary associative opera-
tor &, with identity 0, an ordered set [ag,a1,...,an-1] and returns the set
(@0, (a0 ® a1),-. -, (a0 ® a1 D ... ® a,_)]. The scan operations implement the
abstract operation known as parallel prefiz [Blelloch86]. Binary associative
operations include min, max, and plus. A maz-scan operation stores, in the
destination ficld of the n'* processor, the maximum value of the source field of
all processors 0...n -- 1. This is very rapid (< 1 ms) and can be very useful.
Other operations, such as plus-scan have been implemented. The enumerate
operation assigns a unique non-negative integer to all selected processors, in
the order of their cube-addresses, using plus-scan on processors with initial

value unity. The copy-scan operation takes a value at the first processor and

distributes it to the following processors.

Lo AL
Rl
g
E S
%]

processor-number (0 1t 2 3 4 5 6 7]

t B IR
s

A =[6 1 3 4 3 & 2 6]

NAAOOG
.

Plus-Scan(A)
Max-Scan(A)

[6 6 9 13 16 25 27 33]
(5 5 5 8 5 9 9 9]

oy B
"

i

e

‘.“l ~ H

Y Figure 3: Examples of Plus-Scan and AMaz-Scan.

‘., 1

N scan operations also work in the NEWS addressing scheme, termed it
AN . .

n grid-scans. These allow one to take the sum, find the maximum, copy, or
~ number values along rows or columns of the NEWS grid auickly. The scan
L
s operations take segment bits that divide the processor ordering into segments.
s The beginning of each segment is marked by a processor whose segment bit

is set; when the scan operation encounters a segment bit which is set, it
restarts the scan process. Time for scan operations are, for example, 200 ps
for enumerate, and 350 us for plus-scan on an 8-bit field. Figure 3 shows the

results of plus-sean and maz-scan operating on some example data.

1.2.2 Distance Doubling

Another important primitive operation is distance doubling [Lim86|, which
L
s can be used to compute the effect of any binary, associative operation, as
‘e in scan. on processors linked in a list or ring. For example, using mar,
T
' douhling can propagate the extremum of a field in all processors in the ring
g
D3 in O{lor N} stepe, where N is the number of processors in the ring. Kach
ALY step 1 olves two send operations. Typically, the value to be maximized is the
N
..',-:-,-’ cube-iddress (a4 vnique integer identifier) of the processor. At termination,
Yy
A ecach processor in the ring knows the label of the maximum processor in
)
the ring. hereafter terined the prineipal processor. This serves to label ull
- -
'-,.'\-: conned tod processors uniquely and to nominate @ particular processor {the
N
o prinaipol) as the representative for the entire set of connected processors,
ol
B,
A Figare 1 shows the propagation of values hia ring of eight processor- Fach
. proce< orinitiallv, at step 0, has an address of the next processor in " he ring,
Y Ay L : -
o and o otie which s 1o be maximized. At the termination of th Tep, W '-
Iy . .
ot proce- o Loows the addresses of processor- 2' - T away and thie it of
>
\ -.".
f.'_i'
® {
o
AT

-’-‘ 4 I:

L
A

I

XN

Qi

' &
Yol e
PN AN

.

Processor
Step| O 1 2 3 4 5 6 7
T T [0 (29|69 |46 | 6060
4 1 5 2 11 12 19 3
e [my e [0 [@e|®n | @0 | 6.1
4 5 5 11 12 19 19 19
L | &9 [6:9) (6,8 | (7,700 [(1) [2.2)] (3,3
‘19 19 12 19 19 19 19 19
L 00 [[22) |3 |59 |69 |6:6) | (70)
19 19 19 19 19 19 19 19

Figure 4: Distance Doubling: Each box contains (left,right address) above,

and value below.

all values within 2'~! processors away. In the example, the maximum value

has been propagated to all 8 processors in log 8 = 3 steps.

1.3 Rules of the Game

In analyzing the problems described here, output operations have sometimes
been included, but input operations have been neglected. The justification for
this is that a vision system using a parallel processor such as the Connection
Machine should maintain its data structures as long as possible in the parallel
computer. Transfers to and from a serial host should be avoided as often as
possible.

Several of the problem specifications state that the input is in the form
of real numbers. In particular, the benchmarks on Geometric Constructions
and Triangle Visibility use real-valued coordinates. The benchmark on edge
detection can be understood to require real numbers for the entries in the
“l.aplacian™ operator. The Connection Machine, however, has bit-serial pro-
cessors and hence has no fixed word length. It is extremely easy then to
compute with indefinite length integers; our implementation of convolution
uses this feature, so we do not use real numbers in smoothing the image for
edge detection. The only other problems in which real numbers are not used

are the Voronoi Diagram and FEuclidean Minimum Spanning Tree (EMST)

example; in the first. the data are assumed rounded to integer values so that

A 2em i Bad T T O H T W T W Ty WY W R T T,
Bad sad bl vl wall wal AR eale Salie by A Seliasah ealiovall Sl Salol '.,'-,-_-,'-..‘.~ L e e N T T T e e

the mesh connections in the Connection can be used for brush-tire propaga-
tion, and the EMST depends on the Voronoi Diagram. All other examples
assume real arithmetic when necessary.

The parallel computing environment at the MIT Al Lab consists of a
Connection Machine ‘Hillis85] with 16K processors, with a Symbolics 3650
Lisp Machine as host. Connection Machine programs utilize Lisp syntax, in a
language called *Lisp ;Lasser86]. Statements in ‘Lisp programs are compiled
and manipulated in the same fashion as Lisp statements, contributing signif-
icantly to the ease of programming the Connection Machine. The experience
at M1l in using the Connection Machine software environment has been that
programnming the Conunection Machine is a relatively easy progression from
using lisp, and that users can, within a week, begin programming complex
programs on the Connection Machine. The improvements in execution time
from implementation to estimated times reflect expected improvements in
micro-code for certain operations on the Connection Machine, as well as re-
coding of the algorithms in a low-level language (PARIS). A compiler for
“Lisp is being constructed, which will eliminate the necessity of re-coding in

PARIS. while generating code which uses the Connection Machine efficiently.

UL

2 Benchmark Problems

2.1 Edge detection

In this task, assume that the input i an 8-bit digital image of size 512 x 512

pixels.

l. Convolve the image with «n 11x 11 sampled “Laplacian” operator [Har-

alick84!. (Results within 5 pixels of the image border can be ignored.)

&

Detect zero-crossings of the output of the operation, i.e. pixels at which
the output is positive but which have neighbors where the output is

negative.

)

Such pixels lie on the borders of regions where the Laplacian is positive.
Output sequences of the coordinates of these pixels that lie along the
borders. (On border following sec [Rosenfeld82], Section 11.2.2.)

The size of this image requires 4 virtual processors per physical processor.

Each pixel is mapped into a virtual processor.

2.1.1 Convolution with Laplacian

The 11x11 sample “Laplacian” actually corresponds to filtering with a Gaus-
sian where o is 1.4,([Haralick84], but see [Grimson85], where it is argued
that a much larger mask should be used for reliable results). But, for a mask
diameter of 11 pixels, the binomial approximation to the Gaussian, followed

by a discrete Laplacian, requires only 3 ms.

2.1.2 Detecting Zero-Crossings

This takes negligible time (0.05 ms). Each processor need only examine the

sigr bits of neighboring processors.

2.1.3 Border Following

To analyvze this task, we consider two parameters, N, the number of cnirves in
the image, and AMar. the number of pixcls on the longest curve. Eadt, pixel
in the Connection Machine can link up with the neighbor pixels in the curve,

by examining its R-neighbors in the grid, in negligible time (02 ms). Each

hasoha et Sab hat el ged Soh Bl dan dn - Mial Aok ot Ana Soe o) _ao~

LA AP A AN a AL |

pixel ori the curve must next be labeled with a unigue identifier for the curve.
Doubisrg permits the pixels on the curve to select a label, the address of the
principul processor, for the curve, and to propagate that label throughout the
curve i Oflog Mar) steps.

Then. the total number of curves can be computed in 350 us, by selectivg
the principal processors, and enumerating them using a scan operation. The
scan cpcration can return the number of curves (V).

At ospoint the curves have been linked, labeled uniquely, and countod.
The <0 ioture constructed so far is sufficient to support most operations ;)
curves for image understanding, so we can consider all processing after 1} s
to bt estput only. To output the pixels from the Connection Machine,
the ooty on the curves should be numbered in order to create a stream of
conuesed points. The curve-labeling step, using doubling, can be augmen:ed
to rec ot the distance from the principal processor, as well as its label, during
label propagation, at only a slight increase in message length. We can find
the lerrth of the longest curve, Max, by one global-max operation (200us).

A ~mple method suggested by Guy Blelloch lets us assign to each point
on a: edge an index, so that the points can be ordered in a stream for output
from 1" Connection Machine. Each edge sends its length to the processor
whousi nddress is the index of the edge. Then, a plus-scan on the set of
process.c representing these edge lengths generates the starting location, in
the < - of the first point in each edge. This value is sent to the first point
(the priacipal point) in the edge, which broadcasts it to the points in the edge,
using «ouliing. Fach point constructs an index for itself from its location in
the edwand the stream location of the first point. Ordering the pixels by
this it od takes Oflog Max)ms, for doubling, two routing operations and
a scarn

die etered pivels then send their (x,v) values to the address given by the
rank. t7o= takes one send operation, with no collisions. The (x,y) coordinates
of thwils on the curve will be in cequential order in the processers with

cithe -~ ipeons 1 and on,

e

ety

K -

[}

¢

L)

9

\‘

. RO The total for Border Following is:

AR
N . Propagate label and enumerate points 1 log Mar ms

& Enumerate curves 350us

2 Rank pixels 2(log Mazx) - 3ms

:: Send 1 ms

]

N For typical values in a 512 x 512 image

- Mazx = 512 logAMar - 9

. N = 256 log N = 8
L
: ; Propagate label and enumerate points 3ems
\' Enumerate curves 350us

3 Order pixels 21ms

_! Send 1ms

The first two sub-tasks are necessary to construct curves out of individual
. .')\- pixels. The last two are necessary for output. Considering the first two,
k. Border Following requires 26ms. The remaining time, to prepare for output,
y is 22ms. In total, approximately 38ms is need to perform Border Following.
. The first two steps, Convolution and Detecting Zero Crossings, add neg-
B ligible time to this process, so approximately 60ms will suffice.
D

~ Edge Detection

'

: Sub-task Implemented | Estimated

. Convolution 3ms 2ms

" Find Zero-Crossings 0.5ms 0.5ms

N Propagate label 36ms 36ms

8 Enumerate curves 350us 350us

Rank and send pixels 91ms 22ms |

. Total - without Output 40ms 39ms
LY T

; Total - with OQutput 131ms L 61ms

y) 1.]
‘s
o

.?::,." Note: The times quoted here are hased on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 1:1.

R DG LY N Y

Eoliat are aadt Aat Aok it Sadi

2.2 Connected component labeling

1. Here the input is a 1-bit digital image of size 512 - 512 pixels. he

output is a 512 « 512 array of nonnegative integers in which

(3]

pixcls that were 0’s in the input image have value 0

3. pixels that were 1’s in the input image have positive values: two such
pixels have the same value if and only if they belong to the same con-
nected component of I’s in the input image (On connected component

labeling see ‘Rosenfeld82],, Section 11.3.1.)

A fast practical algorithm for labeling connected components in 2-13 -
age arrays using the Connection Machine has been developed by Willie Limn
Lim&6 . The algorithm has a time complexity of O(log N} where NV is the
number of pixels. The central idea in the algorithm is that propagating the
largest or smallest number stored in a linked list of processors to all proces-
sors in the list takes O(log L) time, where L is the length of the list, using
doubling.

In the algorithm (see [Lim86] for more details), the label of a connected
(1-connected) component is the largest processor address (i.e. processor id)
of the processors in the set. The 2-D array of processors in the Connection
Mauchine are numbered from left to right, top to bottom fashion. The al-
gorithm first looks for boundary processors, i.e., processors which are either
on the array boundary or have at least one neighbor (8-connected) with a
different pixel value. These processors are linked together to form matching
pairs of boundaries separating pairs of regions. For example if region A is
completely surrounded by region B. then at the border between A and B

there are two rnatching boundaries- one on the A side and the other on the

B <ide of the bordor. The label of each boundary is found in O(log V) time.

v
a e e a g

e 45 ‘e '

g .:‘:::'; Since a region can have more than one boundary (e.g. when it surrounds
- one or more region), the largest boundary label has to be found. This is
" done by building a tree of boundaries such that each boundary that is not
:::: the outermost boundary of a region is connected to a boundary (in the same
:.f- region) to its East. If theie I wwore than one boundary to its East. it is
b connected to the one with the largest boundary label. Setting up this con-
nectivity takes O{log N} time. The tree of boundaries is used for joining up
- the boundaries of the region into one long boundary. In another O(log)
step. the largest boundary label, which is also the largest processor id in the
‘:' sct. is propagated to all the boundary processors in the region. This label
which is also the region 'abel is propagated to all the processors in the region
:‘_j in another O(log N) step. Thus the whole algorithm takes 16 log Nms on the
Connection Machine. The complexity of this step is measured in terms of the
::: longest boundary in the image. If N is of the order of 512+ 512, then log N is
! 18, so the estimated time for this operation is 300m s (worst case). When the
longest boundary is approximately 512 pixels long, the time is 150ms. Note
f’ that these estimates are based on existing hardware.
-"-'_, Another connected component algorithm by Guy Blelloch utilizes scan
Ve operations along grid-lines. In each phase of his algorithm, the label of a
region, as specified by the processor with maximumn cubc-address, is propa-
gated left, right, up and down, with a maz-scan operation. The number of
- phases of this algorithm depends on the alignment of figures in the image.
[ts worst-case behavior originates from an image containing long ellipsoidal
::-: regions, oriented along diagonals. Present implementations require 36ms per
E:: phase, but expected rewrites into micro-code will bring this down to 12ms
= per phase. The number of phases is commonly around 12, which means that
" it also requires approximately 150ms for a 512 » 512 image.
&
N
Y
o
- H
e

R AN R UL
Y e’ a"s g " - e e Y e T .
LA T) . . A g
A N A N AP NI SRR AR N

.(\

..
R
DU R
L

O

bl Sl Sl Al el et b lan. Sas et Jiad Aeked

Connected Component Labeling

Method

Implemented

Estimated

Doubling (length = 512 x 512)

300ms

Doubling (length = 512)

150ms

Scanning (12 phases)

450ms

150ms

Note: The times quoted here are based on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 4:1.

Mr abd aliis allh alh abth oid A e A 4

2.3 Hough transform

The input is a 1-bit digital image of size 512 x 512. Assume that
the origin (0,0) is at the lower left-hand corner of the image, with
the x-axis along the bottom row The output isa 180x512 array of
nonnegative integers constructed as follows: For each pixel (x,y)
having value I in the input image, and each i, 0 <1 < 180, add 1
to the output image in position (i,j), where j is the perpendicular
distance (rounded to the nearest integer) from (0,0) to the line
through (x,y) making angle i-degrees with the x-axis (measured
counterclockwise). (This output is a type of Hough transform; if
the input image has many collinear 1’s, they will give rise to a
high-valued peak in the output image. On Hough transforms see
[Rosenfeld82], Section 10.3.3.)

The solution to this problem will involve 180 separate operations, each
of which computes the Hough Transform for a particular angle, 8. For each
angle, broadcast cosf and stnf to each of the processors. Each processor then
computes the scalar product of its (z,y) address in the grid with the normal
vector described by the broadcast pair. This number is bounded above by
512v/2, not 512 as suggested in the problem description. This can, of course,
be remedied by scaling by v/2. Also, we can use a clever trick, suggested by
Mike Drumbheller, to reconfigure the processors - each computes its location
on a linearization of the machine by lines normal to the specified angle. Each
pixel then has a unique address, sequential along the normal lines, in the
machine. Each pixel can send its value to the processor with its number,
in one router cycle (there are no collisions). The pixels then lie, in linear
order in the machine, according to their position on the normal lines. Each
processor at the beginning of one of the normal lines sets a segment bit. Then
a plus-scan using segment bits accumulates the numbers of pixels in each line
for the histogram in the processors with segment bits. Onec send operation
can collect the values into the histogram. This suffices to construct a column

of the histogram. Each angle requires some computation to

1. compute the scalar product

2. compute an address along scan lines

oL
.

L
;“ ;‘: One send, followed by a scan, {ollowed by a send completes the process
) for a column. Each angle requires about 4 ms (VP 4:1), and only 3ms for
_" VP 1:1. The entire Hough Transform is computed in approximately 720ms.
This estimate is, of course, based on a 512 x 512 image. For this image size,
-::,-f the Connection Machine is using a 4:1 VP ratio, resulting in a reduction in
' processing speed by a factor of 4 for most operations. For a 256 x 256 image,
.--.::: the time for the histogram is reduced to 540ms. The procedure describe here
g \ uses unique addresses for the linearization step. There is little penalty for
:;;'.:: having up to 16 collisions per destination, so a randomizing strategy can be
used: messages are sent to random locations in a range depending on the
.'t{ normal distance. The messages, when they arrive, are summed, using the
’- send with sum operation.
':::_:: Consider a Hough Transform in which edge fragments form the primitives,
rather than pixels. Each edge point votes for only one orientation; each point
_\T generates an integer identifying its Hough Transform value, using no more
o than 17 bits (512 x 180). These values are sorted in 25ms, plus-scanned, and
- then sent to the table. The total is no more than 30ms.

y rHough Transform
L Method Implemented | Estimated
' Full 180 steps (512 x 512) — 720ms
F-. Full 180 steps (256 x 256) — 540ms
:'.::-. { From edge elements (512 x 512) — 30ms
: ~:3 Note: The times quoted here are based on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 4:1.

® ‘ 14
\‘4:

!
-

>
:-.‘ - _, " ‘_-.’.-, ,--_, . -, -.. O .:.:-;_:Q.J*".J“‘:‘ o)
-

A \ L] L3 " A .-l‘ . 3
N o N e i e NN AN AN AN

\

L9
- . . .
ST 2.4 Geometrical constructions
B e
¢ The input is a set S of 1000 real coordinate pairs, defining a set of
:j 1000 points in the plane, selected at random, with cach coordinate
:: in the range {0,1000]. Sev-ral mutputs are required.
1. An ordered list of the pairs that lic on the boundary of the
[}
. convex hull of S, in sequence around the boundary.
.j', 2. The Voronoi diagram of S, defined by the set of coordinates
W of its vertices, the set of pairs of vertices that are joined by
edges, and the set of rays emanating from vertices and not
K2 terminating at another vertex. (On Voronoi diagrams see
28
[Preparata85], Section 5.5.)
o 3. The minimal spanning tree of S, defined by the set of pairs
d of points of S that are joined by edges of the tree.
.
‘
2.4.1 Convex Hull
<.
P
- e Each non-terminating ray of the Voronoi Diagram, described later, corre-
,‘ ‘5 i sponds to an edge of the convex hull of the set of points. Generating the
t ordered set of points on the hull from the Voronoi diagram only requires
B
R traversing the Delaunay triangulation along edges which correspond to these
)
N rays, and takes O(H) steps, where H is the cardinality of the set of rays.
" Each step involves following a pointer in the Connection Machine, less than
:-_ 1ms.
*
"7
"¢
-
.
N
ol
!
v
N
¥
e~
n' A
NS
~
Wl
N
. 5
q
..-.4 .} ‘.':, \-". ‘\{J f" -_._;’:,.:.. }“-. - _;._4.. -_. .\.-_..-_.\._-\. A_'-\"..'.' '.._‘_ N
SHCHEUKRET R0 B COR YN .1.1..4._1(-».1.&.».1- Y Lﬂ'.\- i gt A e

e

.

o

An alternative method for the convex huil calculation begins from Gri-
ham's scquential algorithm [Preparata85,p.103l, and does not rely on the
underlviag grid. Initially, an interior point is determined in 4 extremum
operations on the Connection Machine, finding the x and y extrema ol the
points. Fach point is assigned an angle by constructing a vector frorm this
point Then the points are sorted by angle in 20ms. Let us define a ronver
wedge «~ the region formed by connecting a section of the convex hull to
the interior point. At first, the wedges are triangles formed from neighbor-
ing poiits and the center point. Graham’s algorithm recursively constructs
convex wedges of size 20 by merging wedges of size ¢, initially 2. The outer
curves of these wedges can be merged into new convex wedges in O(log.\V)
steps Overmars®1 . There are O(log V) merge steps, so the overall computa-
tion requires ()(log2 N} router operations. Since N = 1000, log NV is 10, and
the whole process requires 100ms, simply for the router operations. Other
computations may bring the entire cost up to 200ms. All computations are
in floating point. This analysis considers worst case.

A siraple *Lisp implementation of the Jarvis march algorithm [Preparata85,
was consiriicted. In each iteration, each point computes its slope from a ref-
erence voint, which is on the hull or outside (at first). To compute the slope
needs twn subtractions and one division. Fach step consists in computing
the slope, finding the global minimum slope, and finding the point with that
slope. A -imple implementation takes 5ms per step, which could be reduced
to 3mis. by re-coding in PARIS. Trial examples with random points had an

averayze namber of points on the hull of approximately 23. The total time

required is usually 1507ns, which will be reduced 90rns in the PARIS version.
This et od reguires 3 secouds if all 1000 points were on the hull, but it is

mare o' faster in the expected case.

P

- - . Phadt . APt SPat el Stl ang g VoUW e W

.~
e e 2.1.2 Voronoi Diagrams

. Aggarwal et al. Aggarwalss describie a Olog” N} algorithi for computing
' Voronoi diagrams in parallel using the CREMW (Concurrert Read Fxcdlusive
'_..::: Write) model. For this particalar scample, this svora= ot 1o 1000 steps,
::_'j: each of which will taxe at least 1mis. This requircs at | st 1 ~ccond in total.
-‘ The algorithm description is sketcly and seems da:fficnis to implomeat, A
- careful analvsis might show that this bas a high constunt multiplier. Sinee

the Connection Machine has the NEWS network, a set of ieor connections

among the processors, a brush-fire method can be easily irmplimented on

the Connection Machine. The points have coordinates in the =ouee 0.1000,

A so the Connection Machine must use a VP ratio of 161 1o Uoneiment an
::j;:'. integer brush-fire method. One can argue that in many vision applic ittions
:::f;' the coordinates of the points are restricted to the range of the resolut on of
‘:'«! the camera coordinate system, in which case 512 % 512 is a reasonable ;ange.

A VP ratio of 4:1 results from a 512 x 512 grid.
Using the Euclidean mietric, and propagating the index of the processor

containing the point, the Voronoi region around a point can be labeled in

. ‘»"L D steps, where D is the diameter of the largest Voronoi region. The De-
S launay triangulation, the dual of the graph of the Voronoi diagram. can be |
:;:::: constructed by propagating back to the originator the indices of all points
o
.:::- which share a Voronoi edge. This also takes D steps. This can, of course, be
" simplified by only performing this back-propagation step from the Voronoi
Ea vertices. Thus, collisions can be minimized. Alternatively, messages from
'- Voronoi vertices can carry the neighbor information to the origitial points.
i}f_ﬂ This takes one router cycle, with an average number of collisions of 6. Propa-
':‘;' gation (with VP ratio 1:1) takes 30ms per step in experiments; with coding in
'é PARIS, or *Lisp compilation. this can be improved to no more ther 10 s per

.

step. With a VP ratio of 16:1, a propagation step takes 160ms. Propagalting
to all Voronoi edges takes 1600 ms (at 16:1), where 1) is the diameter of the

[AT SRR AN

largest Voronoi region. Trial examples with randomly distributed points in

A the region had average diameter approximatelv 120 5o this =tep will take less
::_':f than 2 seconds (16:1), which reduces to 500ms for 512 < 512, The additional
X :".‘: work to identify Voronos vertices and send the information about connections
will tike less than 100

' -

‘.v’IJ.I.I.I.l.A
_ . '

)
B

~

N

o

2

R)
-~
o
OO -
& . o o |
i 2.4.3 Minimum Spanning Tree
v
n Guy Blelloch (personal communication) has developed an 0(2.5log N) algo-
, rithrt for computing the MST of a graph, where N is the number ol vertices
::',j in the graph. Fach step in this process requires approximately 6mns. The
> Euclidean MST derives from the VD, so only edges in the MST need be
\ N .
e examined. 25 steps (estimated for this size graph) take 150ms. The time
'_::i complexity, concretely, is 15log N ms, where N is the number of vertices in
:j;" the graph.
:_'.
e — T reroes — ‘
P Greometric Constructions i
-::: Sub-task Implemented ! Estimated L
b~ 1
A Convex Hull (fromm VD) — 50ms
bt Convex Hull (Graham scan) — | 200ms
S Convex Hull (Jarvis march) 150ms 100ms |
..l o . . |
"~ Voronoi Diagram (1024 x 1024) 4s 2s
- Voronoi Diagram (512 x 512) 1s 500ms a
':_ - Minimum Spanning Tree (from VD) — 150ms
o
s,
it
o Notes The times quoted here are based on a configuration of a 64K Con-
-':) nection NMachine, For the two Voronoi Diagram methods, the Virtual Proces-
" sor rattos are 16:1 and 4:1, and the data points are quantized to 1024 x 1024
.\? or 512 - 5312 Distance calculations are in floating point. For the direct convex
a hull (cadeutations in floating point), and minimum spanning tree problems,
he "4
' the VP ratio s 1:1.
S
2
\'t:
X
1]
¥
"y

)

'
P d’\;.i

.

-
\
b

X
e @

2.5 Visibility

SR

4

The input is a set of 1000 triples of triples of real coordinates,

((r.s.t), (u,v,w), (x.v,x)), defining 1000 opaque triangles in three-

.o ‘-

dimensional space, selected at random with each coordinate in

PRGN,

=",
r_
e

LI

the range [0,1000!. The output is a list of vertices of the triangles
that are visib! from (0,0,0).

-

ll

A triangle shadows all vertices which lie in the triangular cone formed by

o8 4
¥
P

the origin and the edges of the triangle, and which are behind the plane con-

o IR

taining the triangle. The volume in space defined by this criterion is described

- by 4 linear inequalities, from the bounding half-spaces. Each triangle, in a

‘i "
st

pre-processing step, generates the four plane equations. A vertex can then

TRl
N4
Nara]

be tested for visibility by evaluating these equations for its (z,y) coordinates.

All vertices test whether they are shadowed by the triangle in parallel. The

e time for each triangle is approximately 12ms. Repeating this computation
3 serially for all 1000 triangles is obviously too expensive.

f-'_ The following formulation uses multiple copies of the triangles. The

- W. problem can be parallelized by copying the triangles 65 times in the mem-

ory (64K) of the Connection Machine. This divides the machine into 65

- subsets of processors. Each triangle processor will handle up to 47 points

(cerling(3000/65)). Triangles O through 999 occupy processors 0 through 999

(cube address), and so forth. The descriptions of the triangles must be gen-

erated. A conservative estimate of the time for generating triangles is 50ms,

J counting the necessary vector subtractions and cross-products to compute
_, normal equations for planes. The computed triangle descriptions comprise 4
':: plane equations,

.. Az+By+Ciz+ D =0

,‘_ cach of which contains 4 32-bit numbers; the entire description is 512 bits
:" long. The descriptions of all 1000 triangles can be copy-scanned to replicate
" them 65 times, in 15ms, and then sent, in one step, to the correct processors,
4 in 15ms. Then, points are sent to the sets of triangles against which they are
:',.': to be tested. The first 47 points are sent to processors 0...46, the next 47
.;: to processors 1000...3046, and so forth.
T

O

- 19

®

&

N ; O . - R R U

Segrrnts bitsare inserted at the termmination of cacit set of trinngles.

cach testing step, the description of the point at the beginning of eact <ot of
points 13 copy-scanned across the set of triangle.. Seanning u 96 bit /3 32)
field taxes Zos All triangles test the active Loint~ i parallel 1.
Then. the descriptions of the points are sent Loftin Srs. This biine o e
point to the beginring of each section of triangies, ready to bhe conie o
the trivcicies in the next step Bach full step cahes X Sinee thor 0 1
steps. the total time requred is 8501,

An al'ernate formulation uses the grid structure of the Conne. v ML
chine. by mapping a projection planc. anywticre in the visible region. o
nal to a line of sight frotn the origin, onto the 256+ 256 grid of the Conrva s
Machite. More than one vertex of a triangle may fall in a partici o
but, by being careful, this can be made to work. Next. the vertices of 31
triangles generate lines in the grid, forming the projection of the edge of the
triangles onto the grid, by a standard vector to raster conversion. Negnen
bits are set at these pixels. This step requires no more than 25ms. I inul'y.
the proiccied vertices of triangles are distributed across the rows of 1ne grid
by a grid-scun operation using copy, stopping at the pixels containing pro-
jected eidges of the triangles. Each time a point encounters an edge. it checks
to see wihiether the plane represented by the edge covers it. If so, the point
turns otf. and is no longer handled. Scan operations continue as long as acti.
points enenunter edges. The total number of iterations is the nur-ber of iri-
angles enclosing. but not covering, a point. Simulations performed using the
specifiet number of triangles with the given range of coordinates. randomly
generated. showed that the maximum number of triangles enclosing but not
covering a point averages around 200. Fach sean operation, with a check to
find whether the point is covered, requires no more than 5ms. The total.
approxuately Is,is less than the previous method. In addition, this method
depei on the munber of triangles which overlap when projected. Random

impnt o specified L the worst case for this nethod: most practical examples

will b e ximuia coverings of approxinatcly 10 or 20 triangles.

.

-
-
)

Py
5
4

T)

-
M

I‘ -' '.
.l

ERE MY

[N
L A

DO

r
Ly
.

B PR

o7
b A l'. s n‘ l~ D

GO AR
&

a0
.‘\‘ "u

Lot At el Badt il bt Ay

Triangle Visibility

S TTITTTY T T I

Al Al 2h s 4

Method

Implemented

Estimated

Multiple copies

850ms

Scanning

1.0s J

Note: The times quoted here are based on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 1:1. All numerical calcu-

lations are floating point.

21

hflafole ohahall ahh et At A SFA are o gt ly |

m B2ub Ak i ad-ad e e SRR AN Ak i Sl At A e At A A i e A RO A R I R
o Y -

- 2.6 Graph matching oy

The input is a graph G having 100 vertices, cach joined by an
edge to 10 other vertices selected at random, and another graph
H having 30 vertices, each joined by an edge to 3 other vertices
selected at random. The output is a list of the occurrences of
{an isomorphic image of) [as a subgraph of (7. As a variaticn
on this task, suppose the vertices (and edges) of G and I have
sval-valued labels in some bounded range; then the output is rhat
occurrence (if any) of H as a subgraph of G for which the sum of
the absolute differences between corresponding pairs of labels is

a minimumnm.

This task (subgraph isomorphism) is known to be NP-complete. As such,
we can expect the worst-case behavior of any (present) solution to be expo-
nential 1n the size of the graph G. The graphs in this particular problem are
unifori in degree, so that any vertex in H can match with any vertex in G,
based only on degree. Most heuristics for this problem rely on non-uniformity “
of the degrees of vertices in the graphs, and so will fail for this instance of e
the probiern.

For this particular example, Carl Feynman imnplemented a program to test
for subgraph isomorphism on random graphs having the specified structure.
His proy,-am ran for 17 hours on a Symbolics 3640 Lisp Machine, had found
13,000 solution matchings, and had explored 1078 of the search space, from
which he conjectured that there were 10! solutions for this pair of random
graphs having the required characteristics. In the theory of random graphs

Bollobas19&5 | threshold functions describe that the probability of finding

a matching given the sizes and degrees of two graphs. For graphs of the
specified sizes and degrees, this theory indicates that there is a matching

with probability one, in other words, there are many candidate matches.

22

VRTORY PR A A R S W WY
AT LD N AT A G

We will outline a method to disinibute the matching process amorg the

processors of the Connection Machive, A similar <coation for olection 1ecog-
nition is described in Harris®6 . The method vl D specialivea to this par-
ticular size of graph, but is cenerai cnough to used tor any size. A matching
s a mapping pu of vertices o i to vertices in G coch thai i two vertices,
hy and h,. in H are connected in H. their images, p(h,; and g} are con-
nected in (70 A matching will be reraosented as a tablesindexed by 100 H

containing tre indices of vertices in (oor O to Indicate no omeech, The size

of a4 matching is the number of nonezero entries o the tahlel A suecessor
of a marching is a new mat-hing which one more vertex o [mapped
into a vertex in (o which + 0 nreserves connoc v oy We ihze dy nataie al-

location of processors to matehing=. .\ partial matc hing is contained it each

active procesror. At ercn <tep in the graph matching alzori-hm. a matching
(processor) aequires i eformac ins pecessary to determine all legal sncces-
sors. It then tinds processors 1o continue with the new matchings: it is then
returned to the pool of free processors.

The deseriptions of the graphs car be stored in several ways in the Con-
nection Machine. Since 7 s 100, 7 bi's are teeded 10 reference an entry in
/. The wdjacency Hist of eich vertex s then 76 bits long, storing explicitly
each reference. Since 7 1= 100, the entire graph reqguires 7000 bits, more

than the current Connertion Mac!

e provides. Alternatively, we can use a
distributed representation of (7, where the adjacency list of cach vertex in
(7 stored in a different processor as a 100-bit vector. Then, a matching pro-
cessor can get the information hy using a send operation, to the processor
with the data. The vertices in (& can be stored. with many copies, through-
out the Connection Machine. This means, with 64K processors, that there
will be approximately 655 copies of the graph, one for every 100 matchings.
IJach matching processor can access these copies randomly, so that contention
among the processors is minimized. The address of the vertex neighbor list
for vertex G, needed by a matching can be calculated from the address of the
matching processor and a random variable. 'IT is 30, necessitating 5 bits to
reference a vertex in f1. Each vertex has degree 3, so the complete deseription
of craph I only requires 30 » 3 ¥ 5 - 450 bi® A matching needs to record
for each vertex in H the matcl «d vertex in (7, so it needs 30 « 7 - 210 bits.

Fach matehing processor contan weription of Hoas well as the partial

miatobing it s expanding.

7 Jeithl)

AN ASSS

b Sl an il At et g Bk Sk B o § S . 1t aed aiuh] ahbede - adti-adhih * gl e AR S RSttt S i s el el A "'.','-"?',ﬁiT

. o
O’, 1 ﬁ'l
h. IS Ie)
i
h,
e
i
1
il
Fign-e 20 NMateh Expansion in Giraph Matching '

fror o no proces-crare allocated We use rendezvous allocatton 1171755

to cswen rrocessors toorpatchings, The onder in which vertices in /f are

matct oo 40 1 be pre-comnputed to ruasiinize the numnber of vertices i
Hoad oo ro the ext vertex to be expoarded. o that way, masinnng coo s
stratii! «aa be anplied at each step. Consider a tableau (Hgure 3. in wiich

the vir cos of (7 are arranged left-to-right across the top. and the vortices of
Howre o ged o to-wottom on the el e represent matching v ox hr,
Wit ety o iroweolumand (1ot in the tablean. A partiad ook

o ac led Tt the partial et b an the column above 1t SNearch

proee o e e L tocright fashion, Fnough free processor g
resat a0 s iat Al expending searcl nodes can conig e
cither SRR oo Theearch sub tree to deaf nodes

o

il Al Al e Aok S b Aok -8 A A 400 4 A b o Ard a'e 4
LA Al SR AA AL A4 S 084 04 8400 aa.0 .0 a0y
R W W Y Y WV TV Ty VW v T Ty
- T T

> Te T

-
s
BY 2P S

.
.
Y

N o
el

In each phase of matching generation, a matching at level k, 1 -T k -7 I,

s
[
4

»
.

3
4,

-

~
~
-
.-
-
»

must expand itself to all legal successor matchings at the next level. Matching
processors may be expanding at many different levels, since resource limita-
tions may delay expansion until some processor faiis, and is returned to the
pool. To expand itself, a mat-hin, .nust know, first, the ncighbors of Ay,
and, second, the vertices in ¢ to which those neighbors nhave been matched.
These data allow a matching at level k to prune its expansion, generating only
legal successors. The description of {1 is stored locally in each processor. To

recover the ncighbors of hy. |, each processor steps through the description

of H, until it encounters the & i+ 1" entry, and then records the contents of

this entry. This takes no loiger than 3ms. This step finds the neighbors of

-‘.'--

. the new vertex in /.

-.--." - - . . .

o Each expanding matching examines the neighbors of ki .y to determine

s the nodes in G to which they have been matched. The neighbors of each

. such vertex in G must be retrieved from the distributed representations of GG,

R using a send operation. The adjacency information in (7 is stored as 100-bit

- vectors. Retrieving this information needs 5ms per vertex, so 15ms total

N R may be required for the three possible neighbors of Ay, ,. Now, we must

. ® compute the intersection of these bit vectors, describing all possible nodes in
N G adjacent to the matches in ¢ of neighbors of he,1. This can be done in

RN +
1SR
.L-:,, time linear in the number of nodes in G, but such bit operations are fast;
SO . N .

S35 the total time for graphs of this size is estimated to be less than 3ms. Then
H . . .

> we exclude from the intersection all nodes already matched in the current

e] ey .

~ T matching, leaving the possible expansions in G. This is another fast, logical

.

\‘: AND NOT operation on the bit vector, taking less than 17ns. The remzining
;-\ vertices are the possible expansions in G. All are legal, that is, the nodes in

e G to be matched are unmatched, and are adjacent to existing constraining
:':-:t matches from H. If this set is empty, the matching fails. The entire phase of

N computing the possible successors needs no more than 25ms.

,-',,"-~,:

~

o

i

P ff;’,

AR AR

!_' -“" -~
\':'.
o e ’
QRN 25 \

4 |

b :-: |

Mg

B i . *
Rl ke .

AT A A N g N
LGS IR I e i o

[
e . - N LY Lo St alincatlly [

s ' T A [T SR I I U O S B I R

OrTL - R R U O A TSR S SR U A OPC S RN I RN Tt

I COoND U 1 s

o . T Cooconetratnt wiil Tedice sear by

W 3\‘,“ o ! ;'i"l:;i!’g Theerr o) a7 .‘Ai‘):l:;(’(i.

¢ R e ol U i T el ane i vel oo the seinen

. . ' . . . N PR
..\. tre . I ! b EE R P are r(\\{iiil'd Yoy drniien
.o . . . ey Co) o U S Bt o
3 t g i O L e o e nd afe used o s e

e S Coovatar e oshras of taas provlem can be o measurod

[-
| Fan et corenleted ineach stopl e
N r M P i
- coom e e her of active mmaiciings

1 b S “anelf to peiord the sverage number of successors

| ’

ot , S e tonl o o e o e rate of expansion.

S v : T I [A }iiégh, then Taprer s ol

P Coe U nay, 20 per oo o The processors ate actively
ea ' o esp e e avoy TOK partial matohig
[T [et

v . TR AL A i s 5()1Vt'~, Py~ dittoen s

B . H . LI
i ' oo b task allocating o o

s

W

-

.
S 2.7 Minimum-cost path
ol The input is a graph G having 1000 vertices, each joined by an
O edge to 100 other vertices selected at random, and where each
: edge has a nonnegative reai-valucd weight in some bounded range.
::: Given two vertices P,Q of G, the problem is to find a path from
N P to Q along which the sum of the weights is minimum.
o
N The graph can be represented as an adjacency list in the Connection
- Machine. The algorithm, 2 Connection Machine implementation of Dijkstra’s
) algorithm, is given in [Hillis85]. Each step in computing the shortest path
. consists in each vertex sending to each of its neighbors the distance from
3 the source to itself plus the length of the connecting edge along which the
':-:“ message is sent. With this number of vertices and edges, there are more edges
p (100,000) than the number of processors, so virtual processors will be used,
: at the ratio of 2:1. Each step involves a send operation, using thc router.
The receiver compares all incoming values and selects the minimum.
Messages are sent only when the distance from the source is less than in-
.)'. finity (some initial value for all processors). This reduces the number of con-
- flicts at many stages. Initial experiments require 9ms per step and aralysis
EZ indicates that 5ms per step is possible to achieve. The number of steps de-
. pends on the diameter (the length of the longest path in the graph explored).
2 The algorithm stops when no processor changes its value as the result of the
~ messages it has received. For this particular problem, with such high degree
of interconnection, the number of steps will be around 10, resulting in an
- overall time to completion of approximately 50ms. The implementation and
.' experiments were performed by Mike Drumbheller.
Minimum Cost Path
Method Implemented Estimatei
~ 90ms 50ms
. |
-
:: Note: The times quoted here are based on a configuration of a 64K Connec-
,' g tion Machine, using a Virtual Processor ratio of 1:1.
L~ Sl
Ko 27
q

N I RN NI e,
R S RN

O,

l.l.l.' L)
LN

3 Acknowledgments

a
> >
s

’

Mike Drumheller, Willie Lim, Guy Blelloch, Carl Feynman, all of Thinking
Machines Corporation, and Todd Cass, of the Al Lab. have all been instru-
mental in contributing good ideas about using the Connection Machine, The
idea of dvubling comes from Willie Lim’s connected component labeling. Guy
Blelloch explained the use of scanning. consulted on many of the prohicms,

and devised the MST algorithin, Mike Drumheller implemented the niinimum

cost path algorithm and advised on histograming, Todd Cass designed and
impleriented convolution and Laplacians and helped with discussion on o]

r. aspects of edge detection, and Carl Feynman examined graph matcliing.

--.
'l
¥
e

"

0, .,

e
[3
J}'I"l'l"’

-

SN e
AN
(3

ye

N

>

:J‘

LR

NG
» ..

N

-] - e e -
f_'-} ."\'f A\ ‘-“\ T ‘-‘P‘J:‘\' X
a Q

A
&

s - o e - . ',.""... "*.-v.\'\".,""“'\‘. . -L
I ., PR IR " LWL HERER NG o,

At b b atdh Al N i i A A A A

[mplemented | Estimated

iﬁ 'l‘tlsl; N

| Edge detection

— - e —

I Convolution 3ms 2ms

' Find Zero-Crossings 0.5ms 0.5ms

| Propagate label 36ms 6mns

(I —

- Enumerate curves 350us 350us
Rank and send pixels 91ms 22ms
Total - without Output 40ms 301ns
Total - with Output 131ms 6lms

Connected Component Labeling
Doubling method (length = 512 x 512) - - 300ms
Doubling method (length = 512) - 150ms
Scan method (12 phases) 450ms 150ms

-

Hough Transform

Full 180 steps (512 x 512) — 720ms
Full 180 steps (256 x 256) — 540ms
From edge elements (512 x 512) — 30ms

Geometric Constructions

Convex Hull (from VD) — 50ms
Convex Hull (Graham scan) — 200ms
Convex Hull (Jarvis march) 150ms 100ms
Voronoi Diagram (1024 x 1024) 4s 2s

Voronoi Diagram (512 x 512) 1s 500ms
Minimurn Spanning Tree (from VD) — 150ms

Triangle Visibility

Multiple copies — 850ms

Scanning — 1.0s
Graph Matching

Per expansion step - 30ms

Minimum Cost Path

90ms 50ms

Figure 6: Summary Table

References

Avoaraasd A Aggarwal, B Chazelle, T Guibes, OO0 O Dunlaing and O
N CParaitel Computational Geooietry™, Proc. 25th TEKE Somip. Found,

o rps Nego TORD D ER-4TT.

Bt enxs GO Welloch “Parallel Protix vs0 Concurrent Memory Access",
Tecnnieal repaort Lin preparation). Thinking Machines Corporation. Cain-

1

beoae, Massachusetts, 1936,
Boloaooxd B Hollobas, Kandom Graphs, Academic Press, [9a5,

Groooossd W L Grinsonand B.CUHiddreth, “Commments on “Digiial step
o zero crossings of second dired tional derivatives™ T TEEE Trans,

fvitern Analysis and Machine Intelligence T, 1985, 121-127

Herooo-t ROM Haralick, *Digitai step edges from zero crossings of secornid
aroes conal derivatives™, TEER Trans, on Pattern Analysts and Machine

i Cence OO LN T AR-OR.

Herroor 3.G) Harns and AN Fiynn, “Object Recognition Using the Con-
co o Machine’s Router”™ | Proe, [FEEE 1986 Conf. Computer Vision and

oern Recognation, 1986, 134-139.
Hio =7 v thins, The Connection Machine, MIT Press, Cambridge, 19%5.

La o~ Lasser, "The Complete " Lisp Manual®, (in preparation). Think-

cnes Corporation, Cawbridge. Massachusetts, 1986,

L - b Tlast Algonithms for Labeling Connected Components in
o naaaT Tedhintval Report NAK6S-2 Thinking Machines Corporation,

em 1ORG,

() 1A Overmars and J Van Leeuwen, “Maintenance of Config-
oo the Plane” D Journal of Coraputer and Systenmt Sciences, 1981,
po IR

e Paeparata and MU Stamos. Computational Geonelry -
1

VoD oducion, Sporinger, New York, 198,

Re >N Rosendeld and A CO Rak Digitad Pieture Processingfserond

ot oA e Preess New York, 19x2

30

“a N Y% *A’v’f.-'

.\..a..\ .
- . roos o 0 « &

.-n- huf!-cn- -\-M\...J\ O N-d\unl-- -{. .

‘ g -\ < 2 . \..\\\\ [R XA

